
BioMed CentralParticle and Fibre Toxicology

ss
Open AcceResearch
Exposure to ambient concentrations of particulate air pollution 
does not influence vascular function or inflammatory pathways in 
young healthy individuals
Elvira V Bräuner1, Peter Møller1, Lars Barregard2, Lars O Dragsted3, 
Marianne Glasius4,5, Peter Wåhlin5, Peter Vinzents1,6, Ole Raaschou-Nielsen7 
and Steffen Loft*1

Address: 1Institute of Public Health, Department of Environmental Health, Health Science Faculty, University of Copenhagen, Denmark, 
2Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, Gothenburg, Sweden, 3The National 
Food Institute, Danish Technical University and Institute of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, 
Denmark, 4Department of Chemistry, University of Aarhus, Aarhus, Denmark, 5Department of Atmospheric Environment, National 
Environmental Research Institute, Roskilde, Denmark, 6Eurofins Miljø A/S, Galten, Denmark and 7Institute of Cancer Epidemiology, Danish 
Cancer Society, Copenhagen, Denmark

Email: Elvira V Bräuner - elvira@cancer.dk; Peter Møller - pemo@pubhealth.ku.dk; Lars Barregard - lars.barregard@amm.gu.se; 
Lars O Dragsted - ldra@life.ku.dk; Marianne Glasius - mglasius@gmail.com; Peter Wåhlin - pew@dmu.dk; 
Peter Vinzents - PeterVinzents@eurofins.dk; Ole Raaschou-Nielsen - ole@cancer.dk; Steffen Loft* - stlo@pubhealth.ku.dk

* Corresponding author    

Abstract
Background: Particulate air pollution is associated with increased risk of cardiovascular events
although the involved mechanisms are poorly understood. The objective of the present study was
to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on
microvascular function and biomarkers related to inflammation, haemostasis and lipid and protein
oxidation.

Methods: Twenty-nine subjects participated in a randomized, two-factor crossover study with or
without biking exercise for 180 minutes and with 24 hour exposure to particle rich (number
concentrations, NC: 11600 ± 5600 per cm3, mass concentrations: 13.8 ± 7.4 μg/m3 and 10.5 ± 4.8
μg/m3 for PM10-2.5 and PM2.5, respectively) or particle filtered (NC: 555 ± 1053 per cm3) air
collected above a busy street. Microvascular function was assessed non-invasively by measuring
digital peripheral artery tone following arm ischemia. Biomarkers included haemoglobin, red blood
cells, platelet count, coagulation factors, C-reactive protein, fibrinogen, interleukin-6, tumour
necrosis factor α, lag time to copper-induced oxidation of plasma lipids and protein oxidation
measured as 2-aminoadipic semialdehyde in plasma.

Results: No statistically significant differences were observed on microvascular function or the
biomarkers after exposure to particle rich or particle filtered air.

Conclusion: This study indicates that exposure to air pollution particles at outdoor
concentrations is not associated with detectable systemic inflammation, lipid or protein oxidation,
altered haemostasis or microvascular function in young healthy participants.
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Background
Epidemiological studies have consistently identified par-
ticulate matter (PM) in ambient air as an important risk
factor for morbidity and mortality related to cardiovascu-
lar diseases [1]. The biological mechanisms of action of
PM are thought to involve altered cardiac autonomic
function, endothelial dysfunction, inflammation, oxida-
tive stress, and altered blood hypercoaguability with small
particles being more potent than larger particles due to
their higher surface area and reactivity [2-4]. The ultrafine
particle fraction of PM with a diameter of less than 100
nm and the ability to translocate through the epithelium
of terminal bronchioles and alveoli is thought to be
important in relation to health effects, although the extent
of translocation has been debated [5,6]. Traffic-related PM
may be particularly relevant as indicated by source alloca-
tion in acute mortality studies [7], risk of cardiovascular
events shortly after exposure in traffic [8] and mortality
associated with a residential address close to major roads
with dense traffic [9]. Abnormal endothelial function is a
strong predictor of adverse cardiovascular outcomes [10]
and widely recognized in patients with atherosclerosis
and its risk factors [11]. Inhalation of high concentrations
of diesel exhaust particles has been shown to impair two
important and complementary aspects of vascular func-
tions in healthy humans: the regulation of vascular tone
and endogenous fibrinolysis [3,12] and we recently
showed that filtration of indoor air PM in the residence
significantly improved microvascular function (MVF) in
an aged population [13]. Similarly, decreased flow or
nitroglycerine mediated vasodilation has been associated
with high ambient PM levels [14,15]. In other studies,
ambient or personal exposure to PM was associated with
increased levels C-reactive protein (CRP), amyloid A and
blood coagulation [16,17], plasma viscosity [18], fibrino-
gen [19,20], increased counts of neutrophils and platelets
[21,22], expression of adhesion molecules on leukocyte
or in plasma [23,16,24] and the oxidation of proteins and
lipids in plasma or excreted in urine [17,25]. Animal
experiments also indicate that pulmonary exposure to PM
causes microvascular dysfunction and inflammatory
responses and that ultrafine particles elicit particularly
strong responses [26-28]. However, most of the mecha-
nistic evidence comes from experimental human or ani-
mal studies with high levels of exposure or from panel
studies with associated difficulties in exposure assessment
and incomplete control of confounders that hamper the
establishment of causality.

The primary aim of this study was to use carefully control-
led exposure to real-life ambient air particles compared
with particle filtered air to address the effects of particle
exposure on MVF in young and healthy non-smokers.
This exposure was previously shown to cause oxidative
stress-induced damage to DNA in peripheral blood

mononuclear cells in the same volunteers [29]. Exercise
was included in the study in order to mimic real life expo-
sure because it increases the dose by increased ventilation
rate [30]. Changes in hyperaemia induced peripheral
artery tonometry (RH-PAT) were used to assess MVF.
Biomarkers included haematological parameters, markers
of inflammation responses (serum interleukin-6 (IL-6),
tumour necrosis factor α (TNF-α), fibrinogen and CRP)
and haemostasis (platelet counts and coagulation fac-
tors), as well as resistance to lipid oxidation and protein
oxidation in plasma in order to elucidate potential mech-
anisms of action. These markers are related to the patho-
genesis of atherosclerosis and associations with air
pollution have been found in some studies
[3,31,32,16,33,20,17].

Methods
Study design and population
Study design and recruitment methods have previously
been described in detail [29]. Briefly, the project was
designed as a single blind two-factor crossover study with
randomised exposure to fine and ultrafine particles and/
or cycling scenarios. Participants were recruited using a
notice in both a local newspaper and at the local campus,
University of Copenhagen. To avoid problems due to
diurnal variation, participants entered the exposure cham-
ber at the same time of the morning on each 24-h visit at
either 7.00 or 7.30 am. We simulated two exposure sce-
narios by pumping either non-filtered or particle filtered
air into the chambers from one of Copenhagen's busiest
roads which has a traffic density of 49200 vehicles per 24-
h. Distribution and number concentration of fine and
ultrafine particles (6–700 nm) was monitored using a cus-
tom built differential-mobility particle sizer (DMPS)
placed in the chamber as well as portable condensation
particle counters (TSI 3007; TSI, St. Paul, MN, USA),
which the subjects also carried when leaving the chamber
for e.g. lung function test, whereas concentrations of O3,
NO, NO2 and CO were continuously measured using
monitors from Advanced Pollution Instrumentation, San
Diego, CA, USA. Filtration order was randomised and all
measurements were performed by subjects unaware of use
of high efficiency particle filter (HEPA) filter or not in the
period. Outdoor air was pumped directly into the cham-
ber using a KVR-100 ventilator (230 m3/h, P = 100 Pa) giv-
ing a continuous air exchange. For the particle filtered air
a Camfil FARR HEPA filter (226002A1; Sweden) was
inserted in-line downstream of the ventilator. Each expo-
sure period included 90 minutes of exercise on an ergom-
eter bicycle after exposure times of 15 minutes and 7 1/2
hours. The median interval between individual exposures
was 12 days. Each volunteer was allowed to visit the bath-
room, kitchen and for measurements of lung function
reported elsewhere [34] and the median period outside
Page 2 of 9
(page number not for citation purposes)



Particle and Fibre Toxicology 2008, 5:13 http://www.particleandfibretoxicology.com/content/5/1/13
the chamber was 99 minutes during 24-h. Blood was sam-
pled after 6 and 24 hours of exposure

The participants, 20 men, 9 women, aged 20–40 yrs
(median 25 yrs), had normal lung function (baseline
FEV1: 4.53 ± 0.8 L), no personal history of cardiovascular
disease, a mean body mass index (BMI) of 23 (SD: 2.71)
and were taking no medications. Each participant was his/
her own control, excluding confounding by factors that
are stable within an individual over time but vary between
participants.

The study was approved by the local ethics committee (KF
01 255392) and in accordance with the Declaration of
Helsinki and all participants gave written informed con-
sent before inclusion.

Microvascular function (MVF)
MVF was measured immediately before blood sampling
and non-invasively using PAT during reactive hyperaemia,
as previously described in detail [35-37]. This method
assesses microvascular vasodilatation evoked by the
endothelial production of NO. NO production is induced
by hyperaemia associated shear stress and altered hydro-
static pressure in digital arteries following the release of
the cuff.

The technique uses finger-mountable pneumatic sensors
(Endo-PAT 2000, Itamar Medical Ltd, Cesaria, Israel) spe-
cifically designed to continuously digitally record the arte-
rial pulse wave amplitude. Probe pressure is generated by
a computer-controlled mini-compressor, which also con-
tains the necessary pressure transducers, signal filters and
amplifiers, data storage, signal processing means, and a
screen to display the signals.

Participants were instructed to fast and refrain from bever-
ages containing alcohol and caffeine for a minimum of 5
hours prior to testing and all tests were performed in a
quiet laboratory environment. A blood pressure cuff was
placed above the elbow of the right arm for hyperaemia
testing while the left arm served as a control. PAT finger
probes were placed on the index fingers of both hands.
The test consisted of three stages: baseline recording (min.
5 minutes), brachial arterial occlusion induced by inflat-
ing the cuff to 60 mm Hg above systolic pressure (exactly
5 minutes), and a post-occlusion recording of the induced
reactive hyperaemia response (min. 5 minutes). Data was
digitally stored as pulse wave tracings from both hands. A
MVF score describing the extent of response to hyperae-
mia was computed using an automated algorithm. This
algorithm used the average amplitude of the PAT signal
during the 1-minute period beginning 90 seconds after
the cuff deflation divided by the average amplitude of the
PAT signal during a 3-minute period prior to the cuff infla-

tion to describe the extent of reactive hyperaemia. To
eliminate potential confounding of systemic effects of
unilateral arm ischemia, this ratio was normalised to the
concurrent signal from the control arm. The resulting
value was further corrected for baseline signal amplitude.
Determination of the reproducibility of this method has
been described elsewhere [37]. Heart rate was monitored
during exercise and blood pressure was measured directly
before each MVF measurement.

Biomarkers
Red blood cells (RBC), haemoglobin, platelet counts,
coagulation factors (II+VII+X), CRP and fibrinogen were
measured at the Department of Clinical Biochemistry,
Copenhagen University Hospital as previously detailed
[29]. IL-6 and TNF-α were measured with commercially
available ELISA kits (R&D Systems, Abingdon, UK) at the
Sahlgrenska University Hospital, Gothenburg, Sweden.

We assessed protein oxidation by the concentration of 2-
aminoapidic semialdehyde in plasma proteins (PLAAS),
as described previously [38]. Susceptibility to oxidation of
lipoproteins in plasma was determined by ex vivo oxida-
tion with 2,2'-azobis(2-amidinopropane) dihydrochlo-
ride (AAPH) using a fluorescent probe as previously
described [39].

Statistics
All statistical analyses were performed using SAS software
(version 9.1, SAS Inst. Inc., Cary, NC). Due to four miss-
ing points for RH-PAT and 8 missing blood samples we
used mixed effect model repeated measures analysis to
investigate the effect of exposure to particle rich or particle
filtered air on the outcome variables: MVF quantified as
MVF score, haematological and inflammation biomarkers
(haemoglobin, RBC, platelets, fibrinogen, coagulation
factors, CRP, IL-6 and TNF-α), as well as and oxidation of
plasma protein (PLAAS) and resistance of lipids to oxida-
tion (AAPH). Participant nested in gender was included as
a random factor variable to account for inter-individual
variation (random intercept). Exposure in terms of pres-
ence or absence of particle filter, lengths of exposure (6
and 24 hours) as well as exercise were included as fixed
categorical explanatory variables. Age was included as a
continuous linear variable because the quadratic term of
age had no association with endpoints. We estimated
effects of exposure adjusted for possible confounding by
inclusion of O3, CO and NOx as continuous variables. The
distributions of MVF scores and the biomarkers were
skewed and all statistical analyses were performed on the
natural logarithm of these data. Correlation coefficients
between all dependent variables were assessed using
Spearman correlation. Significance in the differences
between number concentrations of fine and ultrafine PM,
and gaseous parameters (O3, NO, NOx and CO) according
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to the two exposure scenarios were determined by the
paired t-test. The significance threshold was P < 0.05 in all
analyses.

Results
Exposure characterisation
The chemical composition and mass of PM in the cham-
ber air, as well as number and size distribution of PM and
the concentration of gases during the two different expo-
sure scenarios and during the corresponding period at
nearby monitoring stations at a busy street and in urban
background, have recently been reported[29] Exposure
chamber PM mass concentrations without filtration was
around 14 μg/m3 and 11 μg/m3 for PM10-2.5 and PM2.5,
respectively, whilst the 24-h total number concentration
was 500 per cm3 and 12000 per cm3 for particle filtered
and non-filtered air, respectively (Table 1). The particle
concentrations measured by the handheld TSI3007 coun-
ter were slightly higher than the DMPS based measure-
ments without filtration whereas the difference was larger
during filtration. It is our experience that especially at low
particle concentrations the DMPS shows lower levels than
the handheld counters, which also recorded exposure dur-
ing the lung function tests outside the chambers. The filter
effectively removed particles from chamber air (P < 0.01,
t-test). PM mass concentrations were too low to measure
during filtration. NOx and NO concentrations were unaf-
fected by filtration, whereas the O3 concentration was sig-
nificantly (P < 0.01, t-test) reduced (possibly due to
reaction with the filter material) and the CO concentra-
tion significantly increased (P = 0.04, t-test). During the
non-filtered air chamber scenario the levels of PM and
gases resembled the composition of a mix of urban back-
ground air with penetration and mixing with busy street
air. Particles with a median diameter of 57 nm were the
most abundant and also represented the major part of the
surface area in both indoor and outdoor (background and
urban) air and the PM2.5 fraction was rich in sulphur con-
sistent with substantial contributions from long-range
transport [29].

Biomarkers and function tests
MVF score, haematological measurements, oxidation
related to proteins and lipids and cytokines are presented
in table 2 according to activity and exposure duration.

Microvascular function (MVF)
Four pulse wave tracings were not recorded due to instru-
ment failure. There was no significant association between
MVF score and exercise or exposure to particle rich or par-
ticle filtered air (Table 2 and 3). The predictive effect of
exposure as a categorical variable on MVF ranged from a
3.92% decrease to a 7.25% increase in MVF score (Table
3).

Biomarkers
There was no significant difference between the exposure
to particle rich or particle filtered air for any of the meas-
ured biomarkers (Table 2 and 3). Haemoglobin and RBC
were significantly decreased after exercise in these models.

The inclusion of gases (O3, NOx and CO) had no signifi-
cant effect on these findings.

Correlation between biomarkers and function tests
MVF score was not correlated with any of the biomarkers
included in this study (Table 4).

Discussion
We studied the effects of fine and ultrafine particles from
ambient air on MVF and biomarkers related to inflamma-
tion, haemostasis and lipid and protein oxidation in
healthy young adults in order to give insights in the mech-
anisms of cardiovascular disease related to air pollution.
We used a robust and powerful study design with control-
led exposure comparing particle levels corresponding to
urban air with virtually no exposure as well as exercise to
enhance effective exposure was used. Despite our previous
reported finding that the exposure was sufficient to induce
oxidative damage to DNA in peripheral blood mononu-
clear cells within the same participants [29], no significant
effect on MVF or the present biomarkers was found.

Table 1: 24-hour averages of total number concentrations (NC) by DPMS in the chambers and handheld CPC3007 particle counters 
and mass of particles in the exposure chamber and at outdoor monitoring stations.

Exposure chamber Outdoor monitoring stations
No filtration Filtration Urban background Busy urban street

DMPS NC (#/cm3) 11600 ± 5600 555 ± 1053 7100 ± 4400 24800 ± 15100
CPC3007 NC (#/cm3) 12200 ± 5700 1270 ± 1320 - -

PM10 (μg/m3) 24.3 ± 9.6 - 26.4 ± 9.7 44.2 ± 13.7
PM10-2.5 (μg/m3) 13.8 ± 7.4 - 7.3 ± 3.0 19.0 ± 4.9
PM2.5 (μg/m3) 10.5 ± 4.8 - 19.0 ± 9.0 25.2 ± 12.0

Values are mean ± SD.
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Endothelial function constitutes an independent predic-
tor of cardiovascular events [40,41] and the clinical impli-
cations of the association between endothelial cell
dysfunction and cardiac events are well established
[42,43]. A recent exposure study of 30 young healthy vol-
unteers demonstrated that inhalation of air heavily pol-
luted with emission from a diesel engine and a PM
concentration of 300 μg/m3 impaired vasomotor
responses to both endothelium-dependent (acetylcholine
and bradykinin) and -independent (sodium nitroprus-

side) vasodilators [3]. Moreover, this research group also
showed that endothelium-dependent vasodilatation
occurring in the presence of mild systemic inflammation
was persistent 24 hours after the same exposure in 15 vol-
unteers [4]. Similarly, a reduction in flow-mediated
vasodilation was associated with high ambient levels of
PM levels in subjects aged 18–50 years and sitting for two
hours at bus stops [15]. We have recently shown
improved MVF upon removal of particles from indoor air
in the homes of healthy elderly subject [13]. These results

Table 2: Geometric means (95% CI) of all dependent variables according to exposure, time and activity

Time of exposure All Cycling Rest
Non-filtered Filtered Non-filtered Filtered Non-filtered Filtered

MVF scorea 6 h 2.17(2.04, 2.30) 2.20(2.07, 2.34) 2.18(2.01, 2.36) 2.14(1.99, 2.31) 2.15(1.95, 2.37) 2.26(2.03, 2.50)

24 h 2.12(2.00, 2.25) 2.04(1.92, 2.16) 2.09(1.89, 2.30) 1.98(1.81, 2.15) 2.16(2.01, 2.31) 2.10(1.92, 2.29)

Haemoglobin 
(mmol/L)

6 h 8.84(8.64, 9.05) 8.86(8.67, 9.06) 8.83(8.52, 9.14) 8.78(8.51, 9.05) 8.85(8.56, 9.15) 8.95(8.67, 9.25)

24 h 8.81(8.62, 9.01) 8.82(8.63, 9.01) 8.71(8.43, 9.00) 8.70(8.44, 8.96) 8.91(8.64, 9.20) 8.94(8.66, 9.23)

Red blood cells 
(×1012/L)

6 h 4.79(4.70, 4.88) 4.80(4.71, 4.88) 4.78(4.64, 4.92) 4.75(4.64, 4.87) 4.80(4.68, 4.92) 4.85(4.72, 4.98)

24 h 4.78(4.70, 4.87) 4.78(4.70, 4.87) 4.74(4.61, 4.87) 4.73(4.61, 4.85) 4.84(4.72, 4.95) 4.84(4.71, 4.97)

Fibrinogen (μmol/
L)

6 h 9.0(8.8, 9.3) 9.2(9.0, 9.5) 9.1(8.7, 9.5) 9.2(8.8, 9.5) 9.0(8.6, 9.4) 9.3(8.9, 9.7)

24 h 9.2(8.9, 9.5) 9.2(8.9, 9.5) 9.3(9.0, 9.7) 9.1(8.7, 9.6) 9.1(8.6, 9.6) 9.3(8.9, 9.6)

Platelets (×109/L) 6 h 248(234, 264) 249(236, 264) 250(228, 273) 248(230, 268) 247(227, 269) 250(230, 273)
24 h 240(226, 254) 241(228, 255) 242(223, 263) 240(222, 259) 237(217, 259) 243(223, 264)

CF (II+VII+X)b 6 h 1.02(0.98, 1.05) 1.03(1.00, 1.06) 1.02(0.97, 1.07) 1.04(1.00, 1.09) 1.01(0.97, 1.06) 1.02(0.98, 1.07)
24 h 1.02(0.99, 1.06) 1.03(1.00, 1.06) 1.02(0.98, 1.07) 1.02(0.98, 1.07) 1.03(0.98, 1.07) 1.04(0.99, 1.08)

C-reactive protein 
(mg/L)

6 h 1.3(1.1, 1.5) 1.5(1.3, 1.8) 1.2(1.0, 1.4) 1.5(1.2, 2.0) 1.3(1.0, 1.8) 1.5(1.1, 1.9)

24 h 1.4(1.2, 1.7) 1.5(1.2, 1.7) 1.5(1.2, 1.9) 1.6(1.3, 2.1) 1.3(1.0, 1.8) 1.3(1.0, 1.7)

Interleukin-6 
(ng/L)

6 h 0.83(0.72, 0.95) 0.91(0.79, 1.05) 0.89(0.73, 1.08) 1.02(0.86, 1.20) 0.77(0.63, 0.94) 0.81(0.64, 1.03)

24 h 0.91(0.76, 1.07) 0.83(0.70, 0.98) 0.84(0.69, 1.02) 0.90(0.70, 1.16) 0.98(0.73, 1.31) 0.76(0.61, 0.96)

TNF-α (ng/L)c 6 h 1.09(1.00, 1.20) 1.14(1.05, 1.24) 1.12(0.97, 1.28) 1.20(1.06, 1.35) 1.07(0.94, 1.22) 1.08(0.96, 1.21)
24 h 1.17(1.06, 1.28) 1.17(1.08, 1.27) 1.20(1.08, 1.34) 1.19(1.06, 1.34) 1.13(0.97, 1.33) 1.15(1.01, 1.30)

PLAAS (pmol/mg)d 6 h 41.1(39.1, 43.1) 41.7(39.6, 43.8) 41.4(38.9, 44.1) 43.9(40.9, 47.1) 40.7(37.6, 44.0) 39.5(36.7, 42.5)
24 h 41.3(38.9, 43.9) 42.5(39.9, 45.3) 41.4(37.6, 45.6) 43.4(39.3, 48.0) 41.2(38.0, 44.8) 41.6(38.3, 45.2)

AAPH (lagtime 
min)e

6 h 238(225, 251) 234(223, 245) 237(218, 257) 238(222, 255) 238(222, 257) 229(215, 245)

24 h 236(225, 247) 232(221, 243) 234(221, 249) 235(220, 250) 237(220, 255) 229(212, 246)

aMicrovascular function: a detailed description of the score and its relation to endothelial function is provided in the methods section
bCoagulation factor
cTumour necrosis factor α
d2-aminoapidic semialdehyde in plasma proteins (pmol/mg protein)
eSusceptibility to lipoprotein oxidation in plasma was measured as lagtime (min) of ex vivo oxidation with AAPH (2,2'-azobis(2 
aminopropane)dihydrochloride)
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provide a mechanistic and plausible link between traffic
air pollution and acute myocardial infarction. In the
present study, we used ambient air PM levels of 24 μg/m3

on average and the lack of response in MVF and biomark-
ers may be due to this relatively low concentration, but
may also indicate that the blood vessels of young subjects
are less sensitive to detrimental effects of air pollution

exposure at realistic concentrations. This is also in accord-
ance with the finding that flow- and nitroglycerine-medi-
ated vasodilation was only negatively associated with
urban background levels of PM2.5 and sulphate and/or
black carbon among diabetics of a wide age range, indicat-
ing that susceptibility including diabetes and/or age is
required to detect impairment of vascular reactivity at
ambient levels [14]. Moreover, a recent animal experi-
ment found decreased endothelial function assessed as
decreased acetylcholine-induced and unchanged sodium
nitroprusside-induced vasodilation in aortic rings after
systemic administration of diesel exhaust particles to
hyperlipidemic apoE knockout mice, whereas wild-type
mice showed an enhanced response [44]. It should also be
considered that in patients with prior myocardial infarc-
tion and overt endothelial dysfunction no further deterio-
ration was detected despite enhanced exercise induced
coronary ischemia during high level exposure to diesel
exhaust [12].

We used RH-PAT to assess MVF because this functional
measure reflects coronary endothelial function. The
method can identify individuals with coronary endothe-
lial dysfunction and MVF score correlates well with flow-
mediated dilation and reflects the vascular function of
both conduit arteries and the microvasculature
[35,36,45,46]. The role of NO production has been
shown by the blunted response after administration of an
NO-synthase inhibitor [47]. This method has also been
used in assessment of endothelial dysfunction during pre-
eclampsia [48] and obstructive sleep apnoea [49] as well
as improvement after administration of cocoa flavonols
[50], external counter-pulsation in patients with coronary
artery disorders [37] and filtration of indoor air PM in

Table 3: The predictive value of the estimates (% change) with 
95% confidence intervals relative to exposure to non-filtered air 
in mixed effects models.

Outcome variables % change (CI)

Microvascular function scoreb 1.11 (-3.92, 7.25)
Haemoglobin (mmol/L) -0.30 (-1.00, 1.01)
Red blood cells (×1012/L) -0.20 (-1.00, 1.00)
Fibrinogen (μmol/L) -1.10 (-2.96, 1.01)
Platelets (×109/L) -0.20 (-1.98, .02)
Coagulation factor (II+VII+X) -1.29 (-1.98, 1.01)
C-reactive protein (mg/L) -9.97 (-19.7, 1.01)
Interleukin-6 (ng/L) -0.20 (-12.2, 13.9)
Tumour necrosis factor-α (ng/L) -1.98 (-7.69,4.08)
PLAAS (pmol/mg protein)c -2.08 (-7.69, 3.05)
AAPH(lagtime min)d 1.82 (-1.00, 4.08)

aMixed model regression with subject nested in gender used as 
random factor and the natural logarithm of the biomarker in question 
included as a continuous outcome variable. All models adjusted for 
age, BMI, activity and time of sampling. Non-filtered air was included 
in the models as a categorical (yes/no) fixed effects predictor variable. 
Mutual adjustment with gases did not have significant effect on the 
significance of the main exposure variable (not shown)
bA detailed description of the microvascular function score and its 
relation to endothelial function is provided in the methods section
c2-aminoapidic semialdehyde in plasma proteins
dSusceptibility to lipoprotein oxidation in plasma was measured as 
lagtime (min) of ex vivo oxidation with AAPH (2,2'-azobis(2-
aminopropane)dihydrochloride)

Table 4: Correlation coefficients for all day correlations among biomarkers and microvascular function scorea

Haemoglobin RBC Fibrinogen Platelets II+VII+X CRP IL-6 TNF PLAASc AAPHd BMIe

MVF scoreb -0.018 -0.009 -0.059 0.014 -0.042 -0.114 0.008 -0.113 -0.142 0.131 0.015
Haemoglobin 0.765 -0.116 -0.320 0.226 -0.253 -0.042 0.098 -0.060 0.327 0.317
Red blood cells (RBC) -0.062 -0.157 -0.021 -0.207 -0.007 0.050 -0.074 0.346 0.190
Fibrinogen 0.253 -0.389 0.355 0.170 0.016 0.035 -0.110 0.286
Platelets -0.458 0.037 -0.100 -0.103 0.017 -0.298 0.209
Coagulation factor II+VII+X -0.308 -0.005 -0.002 -0.010 0.096 -0.117
C-reactive protein (CRP) 0.228 0.222 0.106 0.278 -0.057
Interleukin (IL-6) 0.118 0.131 0.063 -0.022
Tumour necrosis factor (TNF)-
αg

0.032 -0.135 -0.183

PLAASc -0.096 0.072
AAPHd 0.033

aCorrelations were made on raw data. Numbers in bold depict statistically significant values (p < 0.05)
bMVF, microvascular function score was positively correlated with platelets (not significant, NS), IL6 (NS), BMI(NS) and AAPH (borderline 
significant, P = 0.05) and negatively correlated with PLAAS (significant) and the remaining biomarkers (NS)
c2-aminoapidic semialdehyde in plasma proteins
dSusceptibility to lipoprotein oxidation in plasma was measured as lagtime (min) of ex vivo oxidation with AAPH (2,2'-azobis(2-
aminopropane)dihydrochloride)
eBody mass index
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aged volunteers [13]. In the latter study, the geometric
mean (95% CI) of MVF score was 1.78 (1.68, 1.89)
among 42 elderly healthy volunteers and lower than in
the present study, reflecting the general consensus that
aging decreases MVF [13]. In a study of patients referred
for coronary angiography those showing endothelial dys-
function had an average MVF score of 1.27, whilst patients
without coronary endothelial dysfunction had an average
MVF score of 1.78 [45]. Endothelium-independent
vasodilatation assessed by the PAT signal to nitroglycerine
was similar in the two groups in that study [45]. These
data support the application of MVF measured by RH-PAT
as a convenient non-invasive measure of coronary
endothelial function. The assessment of endothelium
independent vasodilatation by measuring the PAT
response to administration of nitroglycerine is not likely
to have contributed with further elucidation of the mech-
anism of PM-induced vascular effects in the present study,
because there was no change in the response to flow-
mediated vasodilation.

We attempted to address oxidative stress in the plasma
compartment as a potential mechanism of action, and
found that the particle exposure in the present study did
not alter the lagtime of lipoprotein oxidation or specific
protein carbonyls (PLAAS) at lysine residues in plasma.
This is interesting considering that the same subjects had
increased levels of oxidatively damaged DNA in periph-
eral blood mononuclear cells [29]. Recently, we also
found increased levels of oxidative stress-induced DNA
damage the morning following exposure to traffic during
biking in streets as compared to biking in a laboratory
environment, further supporting that ambient levels of air
pollutants are sufficiently high in Copenhagen to induce
systemic effects [51]. In an earlier study we found that per-
sonal 48-h exposure to PM2.5 was associated with oxida-
tive damage to both DNA and protein measured as PLAAS
like in the present study [52,53], whereas a similar associ-
ation with lipid oxidation measured as plasma malondi-
aldehyde cannot be compared with the present lack of
effect on copper-induced lipid peroxidation. In the
present study we also included exposure with similar lev-
els of exercise to enhance exposure due to ventilation,
which had a non-significant enhancing effect on the DNA
damage [29]. In the results reported here, exercise signifi-
cantly and independently decreased levels of haemo-
globin and RBC, but had no effect on the other
biomarkers.

We did not find any changes in haematological or blood
coagulation parameters or markers of systemic inflamma-
tion related to the particle exposure. Exposure to diesel
exhaust at 300 μg/m3 has been associated with dimin-
ished fibrinolytic capacity, whereas the plasma concentra-
tions of von Willebrand factor activity, prothrombin

fragments, CRP and fibrinogen were unaltered and finally
the effects on plasma concentrations of IL-6 and TNF-α
vary from being unaltered to increased. [3,33]. In another
study including 15 volunteers only fibrinogen was
affected by exposure to concentrated ambient air particles
at mean concentrations of 120 μg/m3 [20]. A recent wood-
smoke exposure study included 13 healthy subjects
exposed to particles at 280 μg/m3. This wood-smoke
exposure was significantly associated with the concentra-
tions of serum amyloid A, a cardiovascular risk factor, as
well as factor VIII in plasma and the factor VIII/von Will-
ebrand factor ratio, whereas IL-6, TNF-α, CRP levels and
fibrinogen showed no increase [17]. In some panel stud-
ies, CRP levels have been found to be associated with
ambient or personal PM exposure [32,16]. Accordingly,
acute phase reactants such as CRP, fibrinogen and amy-
loid A in plasma may respond at relatively high levels of
particle exposure whereas effects on cytokine levels in
plasma seem unclear. The recent finding of association
between expression of adhesion molecules on leukocytes
or in plasma and ambient levels of PM in observational
panel studies suggest that these are promising biomarkers
for experimental exposure studies [23,16,24].

It will remain challenging to compare all aspects of our
results to other studies with experimental exposure of
humans to particles because of the different composition
including diesel exhaust [54,3], wood-smoke [17], and
concentrated ambient PM2.5 [55] as well as large differ-
ences in exposure concentrations. In addition, there are
significant variations in particle constituents between cit-
ies [56]. We used real-life urban background and traffic-
generated particles, which is in contrast to the use of spe-
cific emission sources which make up a variable and
sometimes small component of most urban air profiles.
On the other hand this also caused day-day variation in
the actual exposure in chambers which may have limited
the possibility for detecting effects on the endpoints. The
average 24-h exposure without air filtration in the cham-
bers was around 12000 particles per cm3, which is some-
what higher than the 7000 particles per cm3 we have
found as average 24-h exposure by means of the same
handheld particle counters (TSI3007) in 15 subjects of
similar age living freely in Copenhagen [51]. Moreover, in
that study we also found that more oxidative damage to
DNA was induced by traffic generated particles than by
the same number of particles encountered at home. In the
present study the exposure chambers contained mainly
traffic generated particles. Nevertheless, it cannot be
excluded that the exposure occurring the days before each
chamber scenario influenced our findings and it could
also be argued that the main change in exposure was the
effect of filtration for 24 h, which was not associated with
improvement in the measured endpoints. We included
exercise as a factor in order to elucidate potential interac-
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tions. Thus, our scenarios are representative of outdoor
compositions making it easier to determine their contri-
bution to cardiovascular effects and render our results
more comparable with epidemiological studies which are
based on exposure assessment for ambient air pollution
as well as applicable for risk assessment. In earlier studies,
which utilised high concentrations of exposure, extrapola-
tion to lower concentrations is difficult, therefore these
results provide important complementary data which
may prove useful in risk assessment.

Conclusion
The present study of healthy, young non-smokers found
no change in MVF or biomarkers of inflammation, hae-
mostasis and oxidative stress to protein and lipids in
plasma comparing controlled exposure to particle filtered
air and realistic particle concentrations corresponding to
ambient urban air at a level inducing oxidative damage to
DNA in peripheral blood mononuclear cells. Although
populations at higher risk, such as elderly or diabetics, are
likely to respond differently, the present results lend no
support to the notion of altered vascular function and
inflammation in the cardiovascular disease pathway
related to ambient air PM in a young healthy population.
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