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Abstract
A novel methodology to detect unlabeled inorganic nanoparticles was experimentally
demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide
particles added to mammalian tissue. The size and concentration of environmentally relevant
inorganic particles in a tissue sample can be determined by a procedure consisting of matrix
digestion, particle recovery by centrifugation, size separation by sedimentation field-flow
fractionation (SdFFF), and detection by light scattering.

Background: Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or
rare elements have provided important information regarding nanoparticle uptake and
translocation, but most nanomaterials that are commercially produced for industrial and consumer
applications do not contain a specific label.

Methods: Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue
as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred
because it is applicable to a wide range of particle compositions. Samples were visualized via
fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We
describe in detail the tissue preparation procedures and discuss method sensitivity compared to
reported levels of nanoparticles in vivo.

Conclusion: Tissue digestion and SdFFF complement existing techniques by precisely identifying
unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100
nm) from both soluble compounds and from larger particles of the same nominal elemental
composition. This is an exciting capability that can facilitate epidemiological and toxicological
research on natural and manufactured nanomaterials.
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Background
The toxicology of nano-sized (diameter < 100 nm) parti-
cles is a topic of current interest because there have been
rapid advances in the synthesis of novel nanomaterials for
research, consumer, and industrial applications. Recent
reviews have discussed nanoparticle health effects [1,2].
The growing evidence of adverse health effects from expo-
sure to incidentally produced ultrafine particles from
combustion and atmospheric processes motivates con-
cern about manufactured nanomaterials. There is epide-
miological evidence for cardiovascular effects of ambient
ultrafine particulate matter (PM) [3]. Indications that
inhaled particles can translocate to the other organs [4]
suggest a link between nanoparticles and neurodegenera-
tive diseases [5] and other systemic pathologies. Monitor-
ing human exposure to engineered nanoparticles (from
air, water, food, consumer products, and soil), determin-
ing the rate of particle uptake by humans and food chain
organisms, and measuring the resulting nanoparticle con-
centrations in target organs are major challenges for nan-
oparticle toxicology studies [6].

Most nanoparticle uptake and translocation research has
quantified nanoparticles in vivo using some type of unique
particle label. For example, nanoparticle laboratory stud-
ies have included radioactive particles [4], trace metals
such as gold and iridium [7], and fluorescent particles [8].
However, the population exposures most relevant to
health involve the emissions or deliberate release of high-
production-volume manufactured nanomaterials and
exposures to incidental nanoparticles, such as soot. Com-
bustion emissions and manufactured powders such as
fumed silica, ultrafine titanium dioxide (TiO2), and simi-
lar industrial materials rarely have a unique and easily
detected label.

Examples of current techniques for measuring unlabeled
inorganic nanoparticles in animal organs include using
electron microscopy to show localization of TiO2 particles
to the lung of rats [9] and using elemental analysis to
show the presence of manganese particles in neural tissue
[10]. However, measuring changes in the concentration of
unlabeled particles in tissue with these techniques is diffi-
cult. Extracting quantative information from TEM images
is inexact and elemental analysis does not distinguish par-
ticles from soluble forms and provides no information on
particle size.

A promising method to measure size and concentration of
unlabeled nanoparticles is through separation by field-
flow fractionation (FFF), which was first developed in the
1960s for separating macromolecules, colloids, and parti-
cles [11,12]. FFF has been used for the measurement of
numerous properties of macromolecules and colloidal
particles, including particle mass, size, and density. Cald-

well et al. reported seminal work applying FFF to detect
protein-based particles in eye lens cataracts [13]. FFF has
been used to characterize natural aquatic colloids [14-16],
and perform size separation of single-walled carbon nan-
otubes [17].

FFF is similar to chromatography methods in that materi-
als are separated by transport velocity, but in place of a
retention media the separation is carried out in a thin,
open channel with bulk flow in the longitudinal direction
and a separation field (centrifugal force, electric field,
thermal gradients, or cross-flow) in the perpendicular
direction. Particles are driven to the wall by the separation
field and average particle distance from the wall is deter-
mined by the competition between the separation field
and the size-dependent diffusion of particles against the
concentration gradient. Since the narrow channel has a
parabolic flow profile (laminar flow), the particles far-
thest from the wall are in the highest velocity streamlines
and therefore travel the fastest. Sedimentation FFF
(SdFFF) uses centrifugal force to generate the separation
field. The minimum detectable particle size depends on
the particle density and the maximum centrifugal force of
the SdFFF instrument [18,19]. Giddings provides a full
derivation of the governing equation and a graph of min-
imum resolvable diameter versus GΔρ for a typical instru-
ment channel geometry [20]. For example, with the
instrument used in this study, silica particles with a den-
sity of 2.0–2.65 g/ml and as small as ~22 nm can be sep-
arated using the instrument's maximum centrifugal force.
For denser particles such as gold, applying the same field
can separate particles as small as 10 nm. Multiple detec-
tion techniques can be used simultaneously with FFF,
including fluorescence, ultra-violet absorption, and light
scattering.

In this study tissue lysis and gradient centrifugation, well-
established methodologies for the density-dependent sep-
aration of subcellular fractions, were adapted to isolate
oxide particles from biological samples. Particle isolation
was combined with SdFFF to detect and quantify unla-
beled inorganic nanoparticles.

Results
Preliminary experiments were conducted to calibrate the
instrumentation used in this study and to determine the
amount of particles needed for reliable detection. We used
dilutions prepared from purchased silicon dioxide (SiO2)
standards (Postnova Analytics) with a known particle size,
70 nm, and a starting concentration of 25 mg/ml of parti-
cles suspended in aqueous surfactant. With the available
light scattering detector, reliable quantification of the
standard could be obtained with as few as 7 × 1010 parti-
cles per injected sample, which is equivalent to 25 μg of
particle mass. Based on these data, our subsequent exper-
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imental work used tissue samples containing 1–2 mg of
particles. Using particle aliquots greater than 40 times the
limit of detection enabled robust quantification in the
experiments to develop nanoparticle recovery protocols.

To allow comparison of the SdFFF results to established
techniques, we performed fluorescence microscopy and

TEM on particle-treated cell culture samples treated with
rhodamine-labeled SiO2 particles and prepared by
enzyme digestion for SdFFF analysis. Figure 1A shows the
starting 70-nm rhodamine labeled particles in aqueous
surfactant visualized using TEM. The TEM confirms that
the manufacturer's size is correct. Figure 1B demonstrates
the interaction of 70-nm rhodamine labeled particles with

A. TEM image of the as-received 70-nm rhodamine labeled SiO2 particlesFigure 1
A. TEM image of the as-received 70-nm rhodamine labeled SiO2 particles. B. Fluorescence microscope image of human aortic 
endothelial cells (HAECs) treated with 70-nm rhodamine labeled SiO2 particles (10 μg/cm2) for 24 hrs. 20× objective, 200× 
magnification. Red= SiO2 particles; Blue = DAPI stained nucleus. C. Fluorescence image of cell lysate containing the 70-nm 
rhodamine labled particles. 20× objective, 200× magnification. D. TEM image of a dried aliquot of the final sample after cleanup 
for SdFFF containing 70-nm rhodamine labeled SiO2 particles in dried residual material.

A.               B.

C.               D. 
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Human Aortic Endothelial Cells (HAECs). This image
shows localization of the nanoparticles to the cells and
formation of micron sized aggregates which are visible by
light microscopy. During the first step of our SdFFF parti-
cle analysis procedure, the cells are collected, lysed and
treated with Proteinase K to digest proteins. Figure 1C
shows a microscopy image of the cell debris and aggre-
gated fluorescent particles at this stage of the isolation
process. A sample after the final cleanup prior to FFF anal-
ysis was analyzed via fluorescence microscopy, however
the particles were well dispersed, and not visible, by light
microscopy (data not shown). Figure 1D shows a TEM
image of these particles after final cleanup and dried onto
a grid. The particles are aggregated and coated by residual
organic material. SdFFF separation of the particles form
soluble components yields the monodispersed particles
can be seen by TEM (data not shown) [19]. These rhod-
amine-labeled SiO2 particles have the same manufacturer,
and nominal size and surface functionalization as the
unlabeled SiO2 particles used for the SdFFF experiments.

Figure 2 shows a fractogram demonstrating that unlabeled
70-nm particles could be recovered from acid-digested rat
liver tissue, sized by SdFFF, and quantified with a light
scattering detector. The elution time of the particles in the
acid-digested sample agreed with the 70-nm standard in
surfactant. A "void peak" is commonly seen at the start of
an FFF separation [18]. Caldwell et al. describes the con-
tents of this peak as containing soluble components as
well as suspended particles small enough to remain uni-
formly distributed across the channel even in the presence
of the field [13]. Liver tissue was used because it is non-
fibrous and digestion with concentrated nitric acid
resulted in complete digestion of the tissue with the fewest
processing steps. Since the nitric acid process is limited to
acid-insoluble particles we next developed a more gentle
tissue processing protocol utilizing protease enzymes.
Lung tissue was used because it is the primary target in
particle inhalation studies. Tissue processing method
development experiments (data not shown) led to the
protocol described in Methods below which involved the
use of specific enzymes to digest the extracellular matrix,
inclusion of an aqueous surfactant in all processing steps,
and sonication to redisperse the particles after centrifuga-
tion.

To demonstrate the capability to distinguish nano-sized
(diameter < 100 nm) and submicron particles alone and
in lung tissue, mixtures of two different sizes of SiO2 par-
ticles were added either to aqueous surfactant (reference
sample) or added to homogenized lung tissue which was
processed by the tissue digestion procedure. Figure 3A
shows light scattering versus time from SdFFF analysis of
the reference sample normalized to the largest peak. This
sample contains the 70- and 250-nm manufactured SiO2

particles at a 2:1 mass ratio in aqueous surfactant. Figure
3B shows the enzyme-digested rat lung tissue containing
70- and 250-nm manufactured SiO2 particles at the same
concentration as in the reference sample (2:1 ratio). The
inset graph is a magnified version of the circled area show-
ing that we were clearly able to detect 2 particle sizes from
a tissue sample. In both figure 3A and 3B graph shows the
expected bimodal distribution of SiO2 particles. The dif-
ference in the relative sizes of the 70- and 250-nm peaks
in the reference samples is due to the size-dependent sen-
sitivity of the light scattering detector. Rayleigh scattering
theory predicts that scattering intensity from a single par-
ticle varies with the dp

6 where dp is particle geometric
diameter. However, the number of particles for a given
mass increases inversely with the dp

3, and the mass ratio
of the 70 to 250 nm particles was 2:1. Thus the expected
ratio of peak areas would be about 23:1. A similar experi-
ment using a mixture of 80-nm and 500-nm particles in
enzyme-digested rat lung tissue also produced the
expected bimodal fractogram (data not shown). The geo-
metrical size of the 70-nm particles was confirmed by
transmission electron microscopy (TEM) of a sample col-
lected after the SdFFF separation [19].

Well established FFF theory [11] allows the particle size
corresponding to a given elution time to be calculated
directly from first principles [19]. For SdFFF the calcula-
tion is based on measurable physical parameters of the
apparatus, the carrier fluid, and the particle density, and
involves the equations for settling velocity, particle diffu-
sion rate, and laminar flow profile. Figure 3A shows the
theoretical particle sizes (top x-axis labels) corresponding
to the measured elution time (bottom x-axis labels) for
two different particle densities. These assumed densities,
2.65 and 2.0 g/cm3, correspond to quartz and the density
of the 70-nm particles obtained from the vendor datash-
eet. These assumed densities span a reasonable range for
various amorphous and crystalline forms of SiO2. As can
be seen from the differences between the two sets of theo-
retical sizes, the particle size corresponding to a given elu-
tion time is not strongly dependent on the assumed
density. Thus nanoparticles can be distinguished from
micron-sized particles even when the particle composi-
tion and density are uncertain. For example, detection of
a particle mode within the time range corresponding to
SdFFF separation of nano-sized particles for a plausible
range of densities would provide useful hypothesis-gener-
ating information in a toxicology study of environmental
exposures.

Particle recovery for the experiment in figure 3A and 3B
can be estimated from the integrated area under the curve
for the SdFFF analysis of the tissue sample and the refer-
ence sample [19]. Particle recovery in the enzyme diges-
tion processing was 30% for the 250 nm particles and
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22% for the 70 nm particles. These recoveries are repre-
sentative of one set of experimental data.

Discussion
The goal of this study was to develop a technique that pro-
vides detailed information on the size distribution of
unlabeled submicron and nano-sized inorganic particles
in toxicology samples. Specifically, we wanted to be able
show directly by instrumental analysis whether visible
particle clusters, such as are shown in Figure 1B, contain

nano-sized primary particles. Elemental analysis and radi-
oactive labeled particles provide mass concentration data
but not size data. Microscopy-based techniques provide
size data only after image analysis of a sufficient sample to
get accurate statistics. Manual image analysis is labor
intensive and automated image analysis is subject to arti-
facts from overlapping particles or poor contrast from the
background. SdFFF complements the available techniques
by providing detailed size distributions from each sample
run.

SdFFF fractogram of 70-nm SiO2 particles recovered from acid-digested rat liverFigure 2
SdFFF fractogram of 70-nm SiO2 particles recovered from acid-digested rat liver.
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A. SdFFF fractogram of the reference sample of 70 and 250-nm particles mixed in surfactantFigure 3
A. SdFFF fractogram of the reference sample of 70 and 250-nm particles mixed in surfactant. The secondary x-axis depicts the 
theoretical particle size corresponding to the elution time for two particle densities. B. SdFFF fractogram of 70 and 250 nm 
particles isolated from homogenized lung tissue. The inset graph is the circled area enlarged, emphasizing the 70 nm particle 
peak.
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The sample handling methods used this study involved
particle dispersion by ultrasound in the presence of a sur-
factant to demonstrate the presence of a mode corre-
sponding to the primary particle size of the test particle.
Characterizing the size distribution of particle aggregates
in biological samples is a complex problem that is outside
the scope of this pilot study. Particle aggregation is a
dynamic process since aggregates are held together by
weak surface forces. Aggregate size can be changed by
mechanical force as well as by changes in pH, ionic
strength, and concentration of surfactants.

A wide range of unlabeled submicron and nano-sized par-
ticles of inorganic materials can potentially be detected in
tissue samples by the methodology described in this
paper. All these proof-of-concept experiments used SiO2
particles, but the technique is directly applicable to a
much wider range of particle types, size and shape. The
requirements for particle detection by our technique are
that the particle be sufficiently dense compared to the car-
rier fluid, have a different index of refraction from the car-
rier fluid, and be resistant to the reagents used for tissue
digestion and sample cleanup. These requirements are
met by essentially all inorganic oxides, pure metal, and
elemental carbon-based particle types. Non-spherical par-
ticles can also be separated using SdFFF, but mathematical
prediction of retention time is more complicated than for
spheres. A study using rod-shaped aggregates of latex par-
ticles showed that the SdFFF separation time is deter-
mined by the maximum dimension of the particle rather
than by any average size [21]. Thus, this robust methodol-
ogy is suitable for use in a wide range of particle toxicol-
ogy studies that involve correlating biological effects with
the concentration of nanoparticles in target organs. The
particle size distribution information furnished by SdFFF
separation will be uniquely applicable to comparisons of
the biological effects of solid particles versus the effects of
soluble species, a question that cannot be answered by
elemental analysis of ashed or acid-digested samples.

The important question of quantifying human lung bur-
den of combustion-generated nanoparticles provides an
example of how the sample preparation and SdFFF sepa-
ration techniques presented in this paper can be used to
complement other methods. Vehicle tailpipe emissions
contain submicron particles of carbonaceous material
from incomplete combustion and metal oxides from fuel
and lubricant additives and engine wear. The carbona-
ceous primary particulate includes both low-volatility
compounds, referred to as organic carbon, and essentially
non-volatile large polycyclic molecules, referred to as ele-
mental carbon or black carbon. Grigg et al. conducted a
study that used light microscopy to measure black mate-
rial in lung macrophages of healthy children and corre-
lated this lung burden with lung function and modeled

levels of particulate matter [22]. Light microscopy meas-
ures the two-dimensional projected area of particle aggre-
gates. This approach is labor intensive, introduces artifacts
from the image analysis, and provides no information on
the primary particle size distribution or the composition
of the opaque material. Saxena et al. recently published a
technique for quantitative estimation of diesel and carbon
black particles in lung cells based on adapting the ther-
mal-optical-transmittance analytical technique developed
for measuring organic and elemental carbon in air pollu-
tion samples [23]. This technique provides quantification
of the low-volatility and non-volatile carbon by a precise
instrumental analysis method, but again provides no
information on the primary particle size distribution or
on the metal oxide components. In contrast, SdFFF analy-
sis of tissue provides quantitative information on the par-
ticle size distribution after dispersal of the recovered
particles by sonication in surfactant. Our tissue processing
method has the potential of offering high sensitivity since
the centrifugation steps allow concentrating the particles
from large volume of digested tissue into a small aliquot
for analysis. Sequential collection of samples during a
SdFFF run is a well established technique [18]. The col-
lected samples, which represent concentrated and size-
segregated fractions of the initial particles, can be further
analyzed, for example by transmission electron micros-
copy or elemental analysis. Compared to the other
approaches cited above, the tissue digestion and SdFFF
approach presented here provides the ability to analyze
particle size distribution in large samples, such as a whole
lung, and provides information on both carbonaceous
and metal oxide particles. Carbonaceous combustion par-
ticles have lower density than the silicon dioxide used in
this study, but analysis of carbon black by SdFFF has been
demonstrated [24,25]. With additional method develop-
ment this technique can become a useful tool for studying
environmental particle burdens in lungs. Little is known
about the background level of naturally formed nanopar-
ticles, and this technique can also be applied to ecosystem
studies of nanoparticles in sentinel and food chain organ-
isms.

Considerable future research will be needed to fully real-
ize the potential of our technique for nanoparticle charac-
terization in toxicology studies. Specifically,
improvements are needed to reduce particle losses during
the enzyme digestion and particle recovery steps of the tis-
sue processing, to make the method sufficiently reproduc-
ible, and to permit precise quantification of the
nanoparticle burden per weight of original tissue. This
paper describes experiments done with relatively high
concentrations of the particles because our goal was to
demonstrate proof-of-concept. The limit of detection for
70 nm SiO2 particles was 25 μg of particles per SdFFF anal-
ysis sample using a light scattering detector. This particle
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concentration in tissue is within the range reported by in
vitro and in vivo nanoparticle toxicity studies. For example,
a study of fine and nanoscale quartz particles reported sta-
tistically significant responses with an intratracheal instil-
lation dose of 1 mg/kg which equated to an initial burden
of about 140 μg of particles per lung [26]. In an inhalation
study exposing mice, rats, and hamsters to ultrafine TiO2,
the particle burden in the lung was 1.6 mg TiO2/g of tissue
immediately post exposure [27]. Thus, the currently dem-
onstrated enzyme digestion and FFF detection methodol-
ogy is applicable to nanoparticle toxicology studies that
use superphysiological doses. However, improvement in
the method sensitivity will be needed for use in toxicology
studies that use environmentally relevant particle expo-
sures. The tissue processing protocol involves particle
recovery by centrifugation and the centrifugation process
intrinsically allows a sample to be concentrated. Process-
ing larger initial tissue samples and recovering the parti-
cles in a small final volume is a straightforward way to
achieve detection of low particle concentrations in tissue.

Conclusion
The capability to detect nanoparticles and to distinguish
particle size distribution for unlabeled SiO2 in a sample of
mammalian lung tissue has been demonstrated. We have
shown that not only can we detect unlabeled SiO2 nano-
particles isolated from rat lung and liver tissue, but more
importantly, we distinguished between nano- and submi-
cron-sized particles isolated from the same tissue. The
combination of enzyme digestion of tissue with particle
sizing by SdFFF is a novel approach that will greatly facil-
itate measurements of natural and anthropogenic nano-
particles in laboratory toxicology studies, ecological
systems, and human populations. This work introduces a
new method to characterize the size distribution of unla-
beled inorganic particles in tissue which will be useful for
studies focused on the neurological and cardiovascular
effects of environmental and occupational exposures to
an important class of engineered nanomaterials.

Methods
Tissue preparation
Figure 4 outlines the tissue preparation, particle addition
and isolation, and sample cleanup. Briefly, whole lungs
and livers were collected post-mortem from male
Sprague-Dawley rats in accordance with an IACUC-
approved protocol and snap frozen in liquid nitrogen.
The tissue was then ground with a mortar and pestle in
liquid nitrogen. The powdered tissue was suspended in 3
ml per gram of tissue of a low-salt buffer (20 mM HEPES,
pH 7.9, 25% glycerol, 1.5 mM MgCl2, 0.02 M KCl, 0.2 mM
EDTA, 0.2 mM phenylmethylsulfonyl fluoride, and 0.5
mM dithiolthreitol). The tissue was further processed by
homogenization using a PRO200 series portable homog-
enizer (ISC BioExpress, Kaysville, UT) at 30,000 rpm until

there were no visible chunks and then transferred to a
motor-driven Teflon-glass homogenizer (Potter-Elve-
hjem), (Fisher Scientific) and run at 900 rpm for 2 full
passes to ensure the tissue was thoroughly homogenized.

Nanoparticle addition
We added aliquots of particle suspensions (typically 1–
2.5 mg) to homogenized lung or liver tissue. The addition
of particles to homogenized tissue demonstrated nano-
particle detection in a complex mixture of biological
material without the complications related to in vivo par-
ticle distribution and uptake and elimination. Particles
were 70 nm diameter SiO2 (Z-PS-SIL-004-0,07, Postnova
Analytics Landsberg, Germany) and 250 nm SiO2 (Alfa
Aesar, Ward Hill, MA).

Enzyme digestion
Collagenase (150 U/ml) and hyaluronidase (100 U/ml)
(Sigma Aldrich) were added to the homogenized tissue to
break up the extracellular matrix. The mixture was incu-
bated overnight at 37°C with shaking. The particle-spiked
tissue was then sonicated using an Ultrasonic Processor
(Cole-Parmer, Vernon Hills, Illinois) for 20 seconds (2 sec
bursts). To further break down the proteins we incubated
the tissue with 200 μg/ml Proteinase K (Sigma Aldrich) in
0.5% SDS for 2 hrs at 65°C.

Particle isolation
The tissue samples were then layered over a saturated
sucrose cushion and centrifuged at 21,000 × g for 20 min
in a micorcentrifuge (Eppendorf North America, West-
bury, NY). The pellets were resuspended in 0.1% FL-70
(Fischer Scientific) and sonicated for 20 sec (2 sec bursts).
Phenol was added in a 1:1 (v/v) ratio and incubated with
shaking for 5 min followed by another round of centrifu-
gation. The pellet was then resuspended and washed with
70% ethanol and centrifuged. The final pellet was resus-
pended and sonicated in 0.1% FL-70 with 0.01% sodium
azide (Sigma Aldrich).

SdFFF
Analysis of the final samples was done using a Postnova
S101 particle fractionator (Postnova Analytics, Salt Lake
City, UT). The injected sample volume was 100 μl using
0.1% FL-70 as the carrier fluid at a rate of 2 ml/min. The
initial speed of centrifugation was 1800 rpm and the final
speed was 200 rpm. SdFFF run time was typically 90 min.
Detection was achieved with a light scattering detector
(Brookhaven, Holtsville, NY) at a 90° angle (690 nm
laser). A companion paper [19] provides further details of
the SdFFF methodology.

Acid digestion
Acid digestion was used as an alternative to the enzyme
digestion protocol above. The tissue sample was trans-
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ferred to a glass test tube and an equal volume of 60%
nitric acid (Fisher Scientific) was added. The test tube was
placed in a beaker of hot (94°C) water for about 1 hour
or until the tissue was completely digested. The samples
were then centrifuged and the pellet washed with dilute
acid and finally resuspended in 0.1% of the aqueous sur-
factant FL-70.

Cell culture
Treatment of live cell cultures with particles was used as an
alternative to adding particles to homogenized tissue,
described above. Human aortic endothelial cells (HAEC,
Cambrex, Bio Science Walkersville) were cultured in 5%
CO2 at 37°C in either a T-25 culture flask (Corning, Corn-
ing, NY) or a glass bottom culture dish (MatTek Culture-
ware, Ashland, MA) in endothelial cell growth medium-2
(EGM-2, Cambrex, Bio Science Walkersville) until 90%

Schematic of the tissue sample preparation protocolFigure 4
Schematic of the tissue sample preparation protocol.
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confluent. Cells were treated by replacing the media with
4 ml of fresh EGM-2 containing 25 μg/cm2 rhodamine-
labeled 70 nm SiO2 (Z-PS-SIL-RFP-0,07 Postnova Analyt-
ics Landsberg, Germany) and incubated for 24 hrs. To har-
vest the cells and the attached or internalized particles for
experiments, the culture medium was removed and the
cells were washed with phosphate buffer saline (PBS). Fol-
lowing the removal of PBS, 1 ml TrypLE enzyme (Invitro-
gen) was added and then removed after one minute and
incubated for 5 min. The cells were washed from the dish
with fresh media and collected by centrifugation at 200 g,
resuspended in 500 μl 0.1% FL-70 and sonicated with a
probe for 20 seconds (2 sec bursts). The particles and
lysed cell contents were then visualized via fluorescence
microscopy and then processed via enzyme digestion
starting with the Proteinase K step (Figure 4).

Fluorescence microscopy
Cells were treated with rhodamine-labeled 70 nm SiO2
particles (Z-PS-SIL-RFP-0,07; Postnova Analytics Lands-
berg, Germany) and fixed in ice cold 100% methanol. The
nuclei were stained with DAPI (Molecular Probes). The
stained cells were visualized using an Olympus 1 × 50 flu-
orescent microscope and a Hamamatsu camera. Images
were analyzed using ImageJ software.

Transmission electron microscopy (TEM)
Particle samples for TEM were prepared by washing the
particles, concentrating by centrifugation, and resuspend-
ing in high-purity water. A 5 μL aliquot was placed on a
formvar-coated copper grid and allowed to dry overnight.
Samples were imaged on a Philips Techni G2 electron
microscope at 100 kV.
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