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Abstract 

Millions of United States (U.S.) troops deployed to the Middle East and Southwest Asia were exposed to toxic air-
borne hazards and/or open-air burn pits. Burn pit emissions contain particulate matter combined with toxic gasses 
and heavy metals. Ongoing research has demonstrated that exposures to the airborne hazards from military burn 
pits have profound and lasting health and wellness consequences. Research on the long-term health consequences 
of exposure to open burn pits has been limited. Work continues to understand the scope of the health impacts 
and the underlying pathobiology following exposures and to establish care standards. The U.S. Sergeant First Class 
Heath Robinson Honoring our Promise to Address Comprehensive Toxics (PACT) Act was signed into law August 
2022. This act expands the benefits and services to U.S. Veterans exposed to toxicants, requires the Veterans Health 
Administration to provide toxic exposure screening, and supports increased research, education, and treatment due 
to toxic occupational exposures. This review highlights the state of the science related to military burn pit exposures 
research with an emphasis on pulmonary health. Clinical data demonstrate areas of reduced or delayed pulmonary 
ventilation and lung pathologies such as small airways scarring, diffuse collagen deposition and focal areas of ossifica-
tion. Identification and characterization of foreign matter deposition in lung tissues are reported, including particulate 
matter, silica, titanium oxides, and polycyclic aromatic hydrocarbons. These data are consistent with toxic exposures 
and with the symptoms reported by post-deployment Veterans despite near-normal non-invasive pulmonary evalu-
ations. On-going work toward new methods for non-invasive pulmonary diagnoses and disease monitoring are 
described. We propose various studies and databases as resources for clinical and health outcomes research. Pre-
clinical research using different burn pit modeling approaches are summarized, including oropharyngeal aspiration, 
intranasal inhalation, and whole-body exposure chamber inhalation. These studies focus on the impacts of specific 
toxic substances as well as the effects of short-term and sustained insults over time on the pulmonary systems.
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Background
Millions of U.S. military Veterans who served during 
the Gulf War era and in post-9/11 deployments were 
frequently and repeatedly exposed to a variety of air-
borne hazards, including particulate matter (PM) from 
desert dust, diesel fumes, and emissions from open-air 
burn pits. Open burn pits, prevalent on military bases 
across the Middle East and Southwest Asia, were the 
primary means for disposing of military, industrial, and 
medical waste. The Department of Defense (DoD) esti-
mated that the larger bases collectively incinerated up to 
85,000 pounds of daily waste [1, 2]. These facilities were 
a common feature, with 30–90% of military sites in Iraq 
and Afghanistan utilizing burn pits [3]. The most exten-
sive of these were located at U.S. Joint Base Balad, Iraq, 
and covered more than 25 acres, illustrating the exposure 
scale and risks of these operations. Often situated near 
military housing, work areas, and dining facilities, the 
burn pits posed significant health risks to U.S. soldiers 
due to the complex mixtures of gases and particulate 
matter released [1]. The exposure to these toxic emis-
sions has been linked to a wide range of pulmonary and 
extra-pulmonary morbidities, as well as various physical 
and mental health symptoms observed in Veterans after 
their deployments [4], Fig. 1.

A broad range of waste was burned and included com-
puters, animal carcasses, medical waste, lithium ion bat-
teries, plastic waste, Styrofoam, insecticide canisters, 
DEET-soaked items, human excrement, food waste, and 
vehicles [6]. A commonality to burn pits was the regu-
lar use of fuels such as jet propellant-8 (JP-8) and/or jet 
fuel with military additives (JAA) as accelerants [7]. This 
waste disposal method produces very high airborne con-
centrations of mixed toxic emissions such as volatile 
organic compounds and metals. Burn pit smoke con-
tains particulate matter ranging from 40 to 120  µg/m3, 

with average concentrations well above U.S. air pollution 
standards [8, 9]. Toxicants identified in burn pit emis-
sions include polycyclic aromatic hydrocarbons (PAHs), 
polychlorinated dibenzodioxins, furans, carbon- and sil-
ica-based particulate matter, volatile organic compounds 
(VOCs), carbon monoxide, ash, formaldehyde, hydrogen 
cyanide, nitrogen dioxide, sulfur dioxide, and heavy met-
als [10]. Many of these are known carcinogens, neurotox-
ins, and endocrine disruptors linked to chronic illnesses 
and deaths [10–14]. Concentrations of these toxicants 
measured near military burn pits often exceeded U.S. 
EPA air quality standards by substantial margins. For 
instance, benzene levels reached 0.07 ppm, over 20 times 
higher than the EPA’s acceptable long-term exposure 
of 0.003  ppm [10]. Levels of benzo[a]pyrene, a carcino-
genic PAH, were 10 to 100 times above the EPA’s guide-
line of 0.00012  µg/m3 [10]. Heavy metals like lead were 
found at concentrations far exceeding the EPA’s Review-
ing National Ambient Air Quality Standards (NAAQS) of 
0.15 µg/m3, indicating significant health risks for exposed 
military personnel [10].

Data on the impacts of burn pit exposures on lung 
health continues to emerge, and across scientific com-
munities a better understanding is needed. Although 
measurable changes in pulmonary function and dis-
ease diagnosis can be linked to burn pit exposure, they 
have not been consistently conclusive [9, 15–22]. Clini-
cal findings from multiple studies reveal a complex 
array of respiratory issues among Veterans described as 
“Deployment Related Respiratory Disease” (DRRD) [16], 
Fig.  2). This term underscores the broad range of pul-
monary pathologies associated with military burn pits. 
One DRRD condition is constrictive bronchiolitis, rare 
in healthy young adults but prevalent among Veterans 
exposed to burn pit emissions [18, 20]. Several DRRD 
conditions are characterized by irreversible airflow 

Fig. 1 U.S. Military Burn Pit Locations in the Middle East and Southwest Asia. The images illustrate the environmental and health hazards posed 
by burn pits, highlighting the scale of smoke and airborne toxicants released and providing context for discussions on toxic exposures and their 
potential health impacts on military personnel. A, Regions and countries where burn pits were located. The fire icons indicate the approximate 
locations of U.S. military sites with burn pits. B, Burn pit emissions at Balad Air Base, Iraq. Photos of the Balad Burn Pit by Dr. Julie Tomáška (Ret. Air 
National Guard) in 2005, with permission. C, The Balad Air Base burn pit was one of the largest documented and equivalent to 7.6 American football 
fields. For reference, one football field is 5352  m2, and the burn pit size was approximately 40,466  m2. Images adapted from Perveen et al. 2023 [5]
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limitations due to small airway fibrosis. However, the lit-
erature also presents conflicting findings. Some studies 
confirm specific pathologies like constrictive bronchioli-
tis related to exposures, while others struggle to directly 
tie burn pit exposures to chronic respiratory diseases, 
highlighting the challenges with inconsistent epidemio-
logical associations and underscoring the need for more 
precise exposure assessment tools and long-term health 
tracking [23, 24]. The etiology of many respiratory symp-
toms remains unresolved, underscoring the need for 
improved research methodologies and enhanced clinical 
surveillance to conclusively determine the causal rela-
tionships associated with these toxicants and to advance 
Veteran care.

There is evidence of respiratory health impacts among 
military personnel from other countries exposed to simi-
lar occupational and environmental conditions [1]. Data 
also suggest increased respiratory symptoms among Pol-
ish soldiers, while Russian soldiers reported more respir-
atory issues linked to their deployments in Afghanistan 
before 2001 [1–4]. A study of Swedish military personnel 
who served in Afghanistan in years 2008 to 2009 found 
a higher prevalence of respiratory symptoms including 
wheezes, nocturnal coughing, and chronic bronchitis as 
compared to a civilian group [6]. A significant link was 
observed between time spent in desert environments and 
symptoms such as wheezing with and without breath-
lessness. Exposure to dust storms was associated with 
nocturnal cough and chronic bronchitis. However, there 
is limited data on post-deployment follow-up of these 
groups [1].

The passage of the 2022 Sergeant First Class (SFC) 
118 Heath Robinson Honoring Our Promise to Address 
Comprehensive Toxics (PACT) Act has broadened the 
Department of Veterans Affairs (VA) healthcare scope, 
such as inclusion of presumptive illnesses and enhanced 
research pertaining to burn pit exposures [26–28]. Sys-
tematically gathering both pre-clinical and clinical data 
and clinical outcomes information, ensures that research 
findings can be integrated into healthcare practices. This 
review aims to summarize the current state of scientific 
knowledge regarding research on military burn pit expo-
sures, with a particular focus on pulmonary health. We 
discuss the challenges associated with clinical diagnoses 
in affected individuals, explores the potential benefits of 
ongoing clinical studies, and examines the role of techno-
logical advancements and pre-clinical models in under-
standing and mitigating burn pit exposures.

Clinical knowledge—pulmonary findings
In 2004, Fort Campbell clinicians reported that multiple 
soldiers were returning from Operation Iraqi Freedom 
with unexplained shortness of breath [20]. All were phys-
ically fit at the time of deployment, but unable to com-
plete a routine two-mile run within regulation time on 
return post deployment. Standard clinical evaluations, 
including x-rays, pulmonary function testing, high reso-
lution CT scans and cardiac screening, failed to explain 
their symptoms. Vanderbilt University clinicians were 
asked to help evaluate this cohort and were similarly per-
plexed by the large number of symptomatic deployers 
with normal non-invasive testing results. Surgical lung 

Fig. 2 Conceptual diagram of military burn pit exposure health effects. PM and toxins are generated by incomplete combustion in burn pits. 
A portion of PM becomes airborne and is inhaled by personnel in the area. Inhaled PM enters the lungs where accumulation occurs coincident 
with activation of systemic inflammatory response. Exposure to airborne toxicants from burn pits can lead to the bioaccumulation of PM and heavy 
metals in the body. These toxic substances accumulate over time in various organs and tissues, creating a reservoir of harmful compounds 
with prolonged adverse effects [15]. Bioaccumulation contributes to systemic inflammation, a chronic immune response marked by elevated 
inflammatory cytokines that can affect multiple organ systems. Systemic inflammation has been identified as a key factor in the development 
of DRRDs, such as bronchial asthma, constrictive bronchiolitis, and interstitial lung disease. Persistent inflammation can damage lung tissues, 
promote fibrosis, and impair respiratory function. Moreover, chronic systemic inflammation, combined with carcinogenic substances like PAHs, can 
increase the risk of lung cancer by causing genetic mutations, promoting cellular proliferation, and inhibiting apoptosis [25]
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biopsies demonstrated pathologic changes consistent 
with toxic inhalation [20]. Small airway scarring known 
as constrictive bronchiolitis was the most striking patho-
logic finding and all lung compartments had features of 
toxic lung injury [20]. Furthermore, lung morphometry 
demonstrated a more generalized tissue reaction with dif-
fuse collagen deposition in almost all lung compartments 
[18]. Others at National Jewish Health and the University 
of Michigan have reported similarly symptomatic deploy-
ers with normal or near normal non-invasive testing and 
inhalational injury on biopsy; deployment-related lung 
histopathology characteristics, especially in the small air-
ways of the lower lobes, are emerging [4, 9, 29].

A 2022 Department of Veterans Affairs (VA) modified 
Delphi panel, comprising basic scientists and clinicians, 
reviewed key issues related to constrictive bronchiolitis 
and recognized several important findings. The panel 
highlighted the high prevalence of unexplained short-
ness of breath among deployed Veterans, the limitations 
of non-invasive testing in effectively characterizing lung 
injuries, and the evidence of diffuse lung injury extending 
beyond small airway pathology [16]. The panel applied 
the designation of DRRD to this group of symptomatic 
Veterans. This decision acknowledged constrictive 
bronchiolitis did not adequately characterize the extent 
of emerging pathologic findings but reflects a poorly 
defined set of heterogenous respiratory syndromes with 
clear physiological impacts. DRRD provided a designa-
tion which would permit assessment of symptomatic Vet-
erans without requiring invasive biopsies. The PACT Act 
included constrictive bronchiolitis as well as twenty-two 
other disorders as being presumptively linked to deploy-
ment. Veterans with unexplained shortness of breath, 
and more specifically, those with biopsy-proven constric-
tive bronchiolitis continue to experience challenges in 
procuring medical evaluations.

Veterans with constrictive bronchiolitis continue to 
experience challenges in accessing expert medical evalua-
tions. To date, approximately 350 lung biopsies have been 
conducted on previously deployed individuals to inves-
tigate respiratory symptoms and potential lung injuries 
[9, 10]. Some studies have also utilized advanced imag-
ing techniques and pulmonary function testing to assess 
airway abnormalities in symptomatic military personnel 
[16, 30]. A recent study performed elemental analysis 
of lung tissue comparing post-9/11 military personnel 
with distal lung disease to control lung tissue samples. 
Significantly higher levels of silica, titanium oxides, and 
aluminosilicates and other silicates were found using 
inductively coupled plasma mass spectrometry in the 
lung tissue of the deployed personnel [30]. A different 
study analyzed biopsies from burn pit-exposed Veterans 
with constrictive bronchiolitis and severe pulmonary 

fibrosis, along with age-matched, non-deployed con-
trols, for foreign materials and pathological characteris-
tics [22]. The lung biopsies contained not only particulate 
dust from the burn pits but also polycyclic aromatic 
hydrocarbons, burned JP-8 (jet propellant-8) fuel, and 
metals. These metals include burned or oxidized tita-
nium, known carcinogens which cause inflammation and 
fibrosis. Burned metals are consistent with the higher 
temperature of burn pits and were not found in control 
tissues. Focal areas of ossification, a phenomenon known 
to be generated from the alkaline properties of the dust in 
other model systems, were also detected.

This group further demonstrated pulmonary damage 
associated with exposures to environmental hazards and 
burn pits in thirty-one previously healthy Veterans serv-
ing in Iraq and Afghanistan who self-reported exposure 
to airborne hazards including new onset dyspnea [22]. 
Over 60% of the Veterans tested were found on impulse 
oscillometry and maximal expiratory pressures to have 
hyper-responsive airways demonstrated by abnormal 
airway reactance. Peripheral and distal airway resistance 
were also increased. These findings were accompanied 
by decreased respiratory muscle strength as measured 
by reductions in maximum expiratory pressures. These 
findings demonstrate that Veterans exposed to burn 
pits are at risk for pulmonary fibrosis, reduction of res-
piratory muscle strength, distal airway narrowing, and 
hyper-responsiveness.

Military airborne hazards and exposures-related lung 
diseases such as constrictive bronchiolitis are challenging 
pulmonary conditions to diagnose, often presenting with 
nonspecific respiratory symptoms that can elude detec-
tion through conventional imaging and pulmonary func-
tion tests [18].The introduction of functional imaging 
using velocimetry marks an advancement in the ability to 
assess and understand this condition. Velocimetry allows 
the display of structural imaging with dynamic func-
tional assessment, thus enabling clinicians to visualize 
and quantify the regional distribution of lung ventilation. 
This technology is particularly adept at identifying areas 
of impaired ventilation and airflow limitation, hallmarks 
of constrictive bronchiolitis, which may not be apparent 
in standard imaging modalities.

The application of this technology in clinical research 
settings allows to differentiate constrictive bronchioli-
tis from other respiratory conditions that present with 
similar clinical manifestations. In patients with biopsy-
confirmed constrictive bronchiolitis, functional imaging 
using velocimetry provided a detailed map of lung ven-
tilation [31]. This allowed for the identification of areas 
with reduced or delayed ventilation, which often corre-
sponded to the histopathological findings of airway con-
striction. By comparing the ventilation profiles of these 
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patients to those of healthy individuals or patients with 
other pulmonary conditions, clinicians can gain a deeper 
understanding of the disease’s dynamic impact on lung 
function. This is particularly crucial in cases where Vet-
erans exhibit symptoms such as unexplained dyspnea but 
have normal findings on traditional pulmonary function 
tests and chest CT scans. The ability to quantitatively 
assess changes in lung ventilation may guide treatment 
decisions and improve patient outcomes.

Future clinical applications, approaches and resources
Challenges continue in the diagnosis and monitoring of 
Veterans with respiratory symptoms post-deployment. 
Research is underway to establish non-invasive and sen-
sitive clinical tests to address these challenges in small 
airways diseases. Velocimetry is instrumental in the 
quantitative analysis of lung imaging, both structural and 
functional [32]. In pre-clinical studies, velocimetry-based 
lung imaging technology has contributed to our under-
standing of pulmonary ventilation dynamics [32–34]. 
Velocimetry allows for detailed comparisons between 
normal lung function and pathological conditions, as 
observed in animal injury models [35],  and enables the 
ability to detect slow-filling zones of the lung, suggesting 
airway constriction. Velocimetry aids in a detailed under-
standing of lung ventilation distribution, using standard 
imaging equipment found in clinical settings [36, 37]. 
The technology has been effective in revealing specific 
pathological characteristics in patients with DRRDs, 
which often present with shortness of breath despite nor-
mal pulmonary function tests and inconclusive chest CT 
scans [38]. Further non-invasive technologies are under 
investigation in Veterans to assess pulmonary function. 
Forced oscillation testing or impulse oscillometry uses 
sound waves to measure the amount of resistance to the 
normal movement of air in and out of the lungs [39–41]. 
Multiple breath washout or lung clearance index testing 
measures “wash out” and replacement of pure oxygen 
with room air or lung clearance of an inert gas such as 
nitrogen [42, 43]. Finally, quantitative chest computed 
tomography (CT) uses high resolution X-ray-generated 
CT scans and computational analytics to construct 
detailed images of the lung and identify and quantify 
small airway abnormalities [44].

Symptoms rarely occur in isolation and tend to ‘cluster’ 
together. For example, a Veteran may present clinically 
with a cluster of respiratory symptoms such as short-
ness of breath, cough, and fatigue frequently occurring 
simultaneously. Health outcomes research is important 
in understanding how best to plan, treat, follow up and 
support Veterans with military exposures. Research stud-
ies and national initiatives have identified a wide range of 

symptoms and health issues in active-duty military and 
Veteran service members following deployment. The 
reported symptoms involve virtually all body systems 
including cardiovascular, respiratory, musculoskeletal, 
urogenital, mental health, and others. It is important to 
note that these Veterans were young (average age 33) and 
healthy prior to deployment, and self-reported symptoms 
increased significantly post-deployment [45, 46]. While 
we know that Veterans report a wide range of symptoms 
post-deployment, we do not yet know which symptoms 
tend to cluster together, which are most severe or dis-
tressing, and what is the lived experience of Veterans 
whose health has changed so dramatically.

Military burn pit exposures, similar to general air pol-
lution exposures, can induce systemic effects impacting 
multiple organ systems, including cardiovascular, res-
piratory, and neurological systems [47]. Similarly, burn 
pit emissions contain a mix of toxicants such as PAHs, 
VOCs, heavy metals, and dioxins, and have been linked 
to comparable systemic effects and adverse health out-
comes in Veterans [11]. While both types of exposures 
share common etiological pathways of injury, the compo-
sition of toxicants in burn pit smoke can lead to unique 
and devastating disease profiles. Burn pits often burn 
diverse waste materials, including medical and electronic 
waste, introducing toxicants not typically found in urban 
air pollution [11]. This difference likely leads to distinct 
conditions, such as constrictive bronchiolitis, which are 
uncommon in non-military populations. Although there 
is overlap in the health impacts, specific factors in burn 
pit emissions require further study to understand their 
unique long term effects.

Two data registries are currently collecting exposure 
and health data from Post-9/11 deployed personnel: the 
Airborne Hazards and Open Burn Pit Registry, estab-
lished by the VA, and the Burn Pits 360 registry, estab-
lished by a Veterans advocacy non-profit organization 
[48, 49]. In addition, there are several active nationwide 
studies. The VA Cooperative Studies Program #595, 
Pulmonary Health and Deployment to Southwest Asia 
and Afghanistan (SHADE; NCT02825654) is being con-
ducted at multiple VA medical centers and has planned 
enrollment of 6200 Veterans [50]. This large study is 
designed to evaluate cumulative exposure to  PM2.5 in 
relation to lower lung function and respiratory health. A 
novel aspect of SHADE is that a spatial–temporal expo-
sure grid for  PM2.5 levels at deployment locations will be 
built using NASA satellite and military airport visibility 
records and linked with enrollee’s locations and expo-
sure duration history [51]. The Millennium Cohort Study 
has enrolled more than 250,000 U.S. service members 
since 2001. This study tracks how military occupational 
exposures continue to affect the long-term health of U.S. 
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service members [52]. Respiratory health outcomes data 
from these and other on-going studies were compiled 
and described in a 2020 report from the National Acad-
emies of Sciences, Engineering, and Medicine [53].

Veterans Health Administration (VHA) Research 
Enterprise resources facilitate military exposures 
research for VA and collaborative researchers. These 
include data-related resources such as the Million Vet-
eran Program (MVP), the Centralized Interactive Phe-
nomics Resource (CIPHER), the Center for Data & 
Computational Science (C-DACS), and the VA Informat-
ics and Computing Infrastructure (VINCI) [52, 54–56]. 
Biorepositories for military exposures research include 
VA Science and Health Initiative to Combat Infectious 
and Life-Threatening Diseases (VA SHIELD) and the 
Department of Defense serum Repository [13, 57]. Mech-
anisms for facilitating non-VA funded research include 
the VA Partnered Research Program and National Asso-
ciation of Veterans’ Research and Education Foundations 
(NAVREF) [58]. A recent research initiative at the VA is 
the “Military Exposures Research Program,” which aims 
to advance research on military exposure assessments 
and to better understand the long-term effects of mili-
tary exposures on Veterans’ health outcomes, ultimately 
informing healthcare and policy decisions.

Over the last several years, VA has made a significant 
investment in precision medicine. The VA Precision 
Medicine and Oncology Programs have the transforma-
tive potential to benefit Veterans seeking care for possible 
burn pit exposure-related malignancies. Molecular test-
ing, including DNA sequencing, RNA sequencing, and 
pharmacogenomics, amongst others, has rapidly become 
standard of care in oncology. These technologies greatly 
enhance the prediction of efficacy of various medications 
based on the molecular testing and improve accuracy of 
prognosis prediction. To date, application of such tech-
nology in the study of military exposures has been mod-
est; however, the Million Veteran Program, the first of 
its kind study, has accrued molecular and other data on 
over 1 million study participants, resulting in numerous 
publications related to genomics and disease outcomes, 
and providing an invaluable resource for assessing the 
risk and pathobiology of disease from airborne toxins 
[59–61]. There is a lack of genomic and other molecu-
lar information to form the basis of precision medicine-
based clinical trials for patients afflicted with diseases at 
least partially resulting from military exposures. Leverag-
ing VA and other precision medicine studies to facilitate 
the development of new molecularly-targeted treatments 
utilizing molecular and genomic techniques is a crucial 
research strategy for the future.

Pre‑clinical models of burn pit toxicant exposures
Veterans exposed to burn pit emissions were universally 
subjected to inhalation hazards produced by incom-
plete combustion. A common characteristic among 
all burn pits is that they cyclically smolder rather than 
burn evenly [62]. This constant cycle of smoldering and 
incomplete combustion of incinerated waste generates 
emissions that are harmful to human health [63, 64]. 
Ongoing research supports that increased mixture com-
plexity associates with increased risk of DRRD and extra-
pulmonary diseases [16, 45]. Development of preclinical 
rodent models is central to simulating human exposure 
to burn pit emissions. The scope of materials incinerated 
in burn pits is enormous, and it is difficult, if not impos-
sible, to recreate in the laboratory the full range of emis-
sions generated across the Southwest Asia and Middle 
East Theater of Operations. However, many common 
substances were regularly combusted in burn pits. These 
materials include jet fuel, oil, wood, paper, plastics, nylon 
and rubber [11, 30, 65, 66]. A range of particle sizes are 
produced by burning these substances, including coarse, 
fine and ultrafine particulate matter  (PM10,  PM2.5 and 
 PM0.1, respectively) and PAHs and VOCs are generated 
as a byproduct of the burned waste [11, 30, 65, 66].

An immediate rate limiting step in translational burn 
pit exposure research is the challenge of modeling inhala-
tion exposures due to diverse toxicant mixtures. Ideally 
this modeling includes incomplete combustion of input 
materials and delivery of emissions in real time to freely 
moving rodents [67]. Some studies used different materi-
als typical of burn pits such as plywood, cardboard, plas-
tics, and fuels to generate emissions, aiming to replicate 
the complex chemical exposures experienced in field 
conditions [62, 65, 68]. Other models have used compo-
nents such as  PM2.5, carbon black or dust from Iraqi burn 
pits to represent PM that were characteristic of emissions 
[65, 67, 69–71]. These models may not incorporate the 
full spectrum of materials from open air burn pits, such 
as biological waste and electronics, potentially limiting 
their full applicability in predicting human exposures, 
injuries and long term health outcomes.

Air and soil samples from total suspended particle 
(TSP) measurements collected at multiple military sites 
and surrounding areas across the Middle East and South-
west Asia over a one-year period revealed elevated levels 
of  PM10 and  PM2.5 [72]. This concentration had a  PM10 
component of 298  µg/m3, and a  PM2.5 component of 
111 µg/m3, both of which exceed the 24 h Military Expo-
sure Guidelines (250 µg/m3 and 65 µg/m3, respectively), 
and were frequently exceeded at multiple other military 
bases [72, 73]. Operating conditions at concentrations in 
the mg/m3 range would be associated with a closer prox-
imity to the burn pit. Biologic effects have been reported 
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after burn pit smoke exposures at these concentrations 
[62]. There are different methods used to achieve inha-
lation delivery of these various toxicants in rodent mod-
els, including intranasal inoculation or single instillation, 
oropharyngeal aspiration, and whole body inhalation 
within a chamber. Pilot studies carried out at the Center 
of Inhalation Toxicology (iTox) at West Virginia Uni-
versity (WVU) have demonstrated the ability to build a 
burn pit generator with the capacity to burn and smolder 
standardized waste with JAA fuel, Fig. 3A. The burn pit 
emissions generated are then delivered to freely mov-
ing rodents in an inhalation chamber, Fig. 3B. Emissions 
delivered to the exposure chamber can achieve particle 
concentrations of 0.5–50  mg/m3, and extensive charac-
terization is possible throughout exposures. Aerosols are 
sampled for subsequent assays and characterized in real 
time via numerous ports in the exposure chamber. Exam-
ples of emission characterization data are shown in Fig. 4. 
The complexities of emission components and deliv-
ery methods highlight the challenges in using preclini-
cal models to accurately replicate and study the health 
effects of burn pit exposures, underscoring the need for 
further refinement and validation of these models to bet-
ter understand their implications for human health. 

To date, rodent studies have identified inflammatory 
responses and respiratory dysfunctions following expo-
sure to PM and other toxic components prevalent in 
burn pit smoke [15]. Pulmonary diseases and the onset 
of inflammatory responses have emerged as major health 
concerns in Veterans, and the majority of preclinical 
modeling studies have focused on pulmonary impacts 

[15, 67]. Observations from various models have shown 
both acute and chronic inflammatory responses in 
mice exposed to simulated burn pit emissions, resulting 
in increased lung resistance and changes in inflammatory 
cytokines [15, 45, 67, 69, 71]. A common finding across 
multiple models is the elevation of inflammatory mark-
ers, such as IL-2, IL-4, IL-5, IL-6 IL-13, and TNF-alpha, 
suggesting a consistent immune response to the simu-
lated burn pit exposures [62, 67, 69, 70]. Not all studies 
observed significant histopathological changes in the 
lungs, which could be due to varying exposure durations, 
compositions or concentrations [62, 68]. The extent of 
physical changes in lung tissue varied significantly among 
studies, with some reporting minimal to no changes and 
others noting increased mucin staining and goblet cell 
hyperplasia, indicative of mucous membrane irritation 
and potential respiratory dysfunction [68, 71]. These 
results derive from simple to complex mixtures, differ-
ent delivery methods, and duration of exposure [15, 53, 
62, 67–71]. Further experimental design aspects include 
incorporating environmental or physiological stress to 
mimic the military environment [15].

Cumulative knowledge gained from preclinical models 
needs to take into account the various parameters of the 
model system used. It is likely that multiple approaches 
will be needed to fully capture the range of pathobiol-
ogies reported following exposures. As progress is made 
in establishing how to model specific disease phenotypes, 
the field will move forward using these pre-clinical mod-
els to test treatments, contributing to the understanding 
of how burn pit exposure affects health.

Fig. 3 Burn pit simulator and rodent whole body inhalation exposure chamber system. A, iTOX Burn Pit Surrogate Generator schematic. Custom 
mixed pellets are used to feed fuel material into burner. Because of the modular nature, and high air flow volume, high resolution control and air 
sampling are possible in the burn generator and exposure chamber. HEPA: high efficiency particulate air filer; MFC: mass flow controller; LPM: 
liters per minute; VOC: volatile organic compound; PAH: polyaromatic hydrocarbon, GC/MS: gas chromatography/mass spectrometry. Exhaust 
is filtered prior to release above the Health Sciences Center roof. The entire system is enclosed in a walk-in safety hood. B, Military burn pit surrogate 
generator (left) and aerosol exposure system which can house rodent cages (right) contained in the WVU iTOX Inhalation Facility
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Conclusions
The PACT Act has significantly impacted Veteran health 
and welfare, with over 5  million Veterans screened for 
burn pit and military toxic exposures by the end of 2023 
[48]. Among these, 2.1 million Veterans reported at least 
one toxic exposure, with respiratory complaints such as 
allergic rhinitis, maxillary sinusitis, bronchial asthma, 
and constrictive bronchiolitis being the most frequently 
reported health concerns [48, 74]. Other health condi-
tions that may emerge or increase over time include 
gastrointestinal, urological, autoimmune, chronic multi-
symptom illnesses, toxic brain injury, and various malig-
nancies [16, 45, 46]. Despite these screenings, there is 
currently a lack of comprehensive data directly linking 
the prevalence of specific respiratory diseases, such as 
shortness of breath or airways/interstitial lung disease, 
to these exposures. Existing data sources, including the 
VA Airborne Hazards and Open Burn Pit Registry and 
various epidemiological studies, often focus on overall 

symptom reporting rather than detailed diagnoses across 
large cohorts.

Estimating the fraction of Veterans with specific respir-
atory conditions remains challenging due to several fac-
tors. First, the heterogeneity of exposures where Veterans 
have encountered a wide range of toxicants in varying 
types and levels affects the risk and severity of respiratory 
conditions, making it difficult to generalize findings from 
smaller studies to the broader population of exposed 
Veterans [46, 75]. Additionally, variability in diagnostic 
criteria and reporting across studies, ranging from self-
reported symptoms to biopsy-confirmed diagnoses, leads 
to inconsistencies in data, complicating efforts to cal-
culate an accurate fraction of affected Veterans. Under-
reporting is also a concern, as many Veterans may not 
seek medical evaluation or may present with non-specific 
symptoms that are not immediately linked to toxic expo-
sures, further affecting data accuracy.

Fig. 4 Characterization of emissions from rodent exposure chambers generated in the WVU iTOX burn pit simulator. Representative aerosol profile 
made in real-time in the exposure chamber produced by combustion of mixed wood pellets, plexiglass and JAA in the combustion chamber. 
A, Particle concentration. B, Size distribution determined by scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS). C, Size 
distribution determined by high resolution electrical low-pressure impactor (ELPI +). D, Transmission electron microscopy image of representative 
PM in emissions. Lower left, size bar
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Moving forward, there is a critical need to refine our 
understanding of these exposures and their associated 
health outcomes by developing well-designed research 
studies and robust models to capture the complex inter-
actions of burn pit exposures and their effects on health 
[15, 75]. Collaborative efforts among the VHA, National 
Institutes of Health, Department of Defense, academic 
institutions, and private entities have led to the crea-
tion of valuable databases, advanced technologies, and 
extensive sample repositories. Effectively utilizing these 
resources and engaging the right experts for collabora-
tion is essential to advance both preclinical and clinical 
research. Establishing standardized protocols for preclin-
ical modeling of military toxic exposures would facilitate 
cross-study comparisons in exploring disease develop-
ment and progression.

There is a need to identify reliable diagnostic and 
pathological measures for disease-relevant biomarkers 
to move toward evidence-based therapeutics. Under-
standing exposure-induced pathologies, defining disease 
endotypes, and bridging preclinical and clinical biomark-
ers are important next steps. For small airway diseases, 
in particular, significant gaps remain in diagnostic meas-
ures and pharmacotherapies. Innovations in non-invasive 
functional lung imaging and remote monitoring tech-
nologies hold promise for improving health assessments, 
disease diagnosis, and treatment outcomes. Moreover, 
integrating genomic, proteomic, and pathomic data into 
research and clinical management will be vital for per-
sonalizing care and improving outcomes for exposed 
Veterans.

Air pollution is a global health challenge and a lead-
ing cause of early death, contributing to lung cancer 
development even among non-smokers [25]. Wildfires, 
which generate high concentrations of toxic particulate 
matter from burning biomass and man-made materi-
als, affect both firefighters and the general population 
by inducing a range of negative systemic health effects 
[76, 77]. Insights from the diverse extra-pulmonary 
biological effects resulting from air pollution expo-
sures are reshaping our understanding of the multifac-
eted impacts of burn pit exposures and their potential 
systemic consequences. The close links between mili-
tary toxic exposures, air pollution, and occupational 
exposures underscore broad implications for both Vet-
eran and general population health. Future studies on 
military exposures have the potential to benefit not 
only Veterans but also public health more broadly.
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